Лучшие детские книги сентября
История планеты Земля, история человечества, семейный альбом тираннозавра, собрание биографий российских ...

Как читать книги
Издательство «Манн, Иванов и Фербер» выпустило знаменитую книгу известного американского педагога Мортимера Адлера «Как читать книги ...

Заведение формата "кофе-книги-картины" открывают в Ставрополе
В центре Ставрополя в рамках празднования Дня города и края в следующую субботу, 21 сентября открывают картинную галерею, в которой, помимо ...

Книги «Бичик» стали лауреатами сибирской Книги года
С 12 по 14 сентября в Новосибирске прошел открытый межрегиональный конкурс «Книга года: Сибирь – Евразия – 2019». В конкурсе приняло участие ...

Разорванные рукописи.Почему Мариам Петросян против экранизации своей книги?
«Каждый раз, когда я говорю, что второй книги не будет, я даю себе возможность её написать». Мариам Петросян заходит в кафе, из окон которого ...

Python и Машинное Обучение: Машинное и Глубокое Обучение с Использованием Python, Scikit-Learn и Ten
# 365729659

Python и Машинное Обучение: Машинное и Глубокое Обучение с Использованием Python, Scikit-Learn и Ten

4 322 р.

Машинное обучение поглощает мир программного обеспечения

В книге предлагается сочетание теоретических принципов машинного обучения с практическим подходом к написанию кода для полного понимания теории машинного обучения и реализация с помощью Python.
Основные темы книги
Освойте основные фреймворки в науке о данных, машинном обучении и глубоком обучении
Задайте новые вопросы своим данным через модели машинного обучения и нейронные сети
Используйте всю мощь самых последних библиотек Python с открытым кодом для машинного обучения
Научитесь строить реализации глубоких нейронных сетей с применением библиотеки TensorFlow
Встраивайте модели машинного обучения в доступные веб-приложения
Прогнозируйте непрерывные целевые результаты с применением регрессионного анализа
Раскройте скрытые шаблоны и структуры в данных с помощью кластеризации
Анализируйте изображения с использованием приемов глубокого обучения
Углубитесь в текстовые данные и данные из социальных сетей с применением смыслового анализа
Если вы читали 1-е издание книги, то вам доставит удовольствие найти новый баланс классических идей и современных знаний в машинном обучении.
Каждая глава была серьезно обновлена, и появились новые главы по ключевым технологиям

В настоящее время он сосредоточил свою научно-исследовательскую работу на приложениях машинного обучения в разнообразных проектах компьютерного зрения в отделении компьютерных наук и инженерии Университета штата Мичиган.
Вахид избрал Python в качестве главного языка программирования, и на протяжении своей научно-исследовательской карьеры накопил громадный опыт в написании кода Python

Кроме того, он также сотрудничает с командой инженеров, работающих над беспилотными автомобилями, где проектирует модели на основе нейронных сетей для слияния многоспектральных изображений с целью обнаружения пешеходов.
2-е издание

Обладающие уникальной проницательностью и знанием дела авторы книги, Себастьян Рашка и Вахид Мирджалили, ознакомят вас с алгоритмами машинного обучения и глубокого обучения и постепенно подведут к сложным темам в анализе данных

Он преподавал программирование на Python инженерной группе в Университете штата Мичиган, что дало ему возможность помочь студентам понять разные структуры данных и разрабатывать эффективный код на Python.
Наряду с тем, что обширные исследовательские интересы Вахида сконцентрированы на приложениях глубокого обучения и компьютерного зрения, он особенно интересуется использованием приемов глубокого обучения для усиления приватности в биометрических данных, таких как изображения лиц, чтобы не раскрывалась информация сверх той, что пользователи намеревались показывать

Он проводил многочисленные семинары по практическому применению науки о данных, машинному обучению и глубокому обучению, включая руководство по машинному обучению на SciPy — ведущей конференции, посвященной научным расчетам с помощью Python.
Несмотря на то что исследовательские проекты Себастьяна сосредоточены главным образом на решении задач в области вычислительной биологии, ему нравится писать и говорить на темы науки о данных, машинного обучения и языка Python в общем, и он стремится помочь людям разрабатывать решения, управляемые данными, без обязательного знания подоплеки машинного обучения.
Недавно его работа и вклад были отмечены званием выдающегося аспиранта 2016−2017, а также наградой ACM Computing Reviews' Best of 2016.
В свободное время Себастьян любит участвовать в проектах с открытым кодом, а методы, которые он реализовал, теперь успешно используются в состязаниях по машинному обучению, таких как Kaggle.
Вахид Мирджалили получил звание PhD в машиностроении, работая над новаторскими методами для крупномасштабных вычислительных эмуляций молекулярных структур

Освойте и работайте с передовыми технологиями машинного обучения, нейронных сетей и глубокого обучения с помощью 2-го издания бестселлера Себастьяна Рашки.
Будучи основательно обновленной с учетом самых последних технологий с открытым кодом, включая такие библиотеки, как scikit-learn, Keras и TensorFlow, эта книга предлагает практические знания и приемы, которые необходимы для создания эффективных приложений машинного и глубокого обучения на языке Python

У вас будет возможность изучить и поработать с TensorFlow более вдумчиво, нежели ранее, а также получить важнейший охват библиотеки для нейронных сетей Keras наряду с самыми свежими обновлениями библиотеки scikit-learn.
Об авторах
Себастьян Рашка, автор ставшего бестселлером 1-го издания этой книги, обладает многолетним опытом написания кода на языке Python

100